Meta-data Modelling for Quality of Service (QoS) Management in the World Wide
Web (WWW)

E. Madjal, A. Haﬁdz, R. Dssoulil, G.v. Bochmannl, and J. Gecsei'

IUniversité de Montréal, Dept. Informatique et Recherche Operationelle,
Montréal, Canada; E-mail: {madja, dssouli, bochmann, gecsei} @iro.umontreal.ca

2Advanced Communication Engineering Centre, University of Western Ontario,
London, Ontario, Canada, N6A 5B9; e-mail: hakim@csd.uwo.ca

Abstract

The World-Wide Web has been a remarkably successful
system for distributing hypertext documents. The basic
model for Web interaction is that a client requests a page of
data which can include images and hyperlinks within it.
This interaction model is inadequate for real-time multime-
dia (MM) applications, since the Web and its associated set
of protocols, e.g. HTTP, do not support the real-time trans-
fer of the continuous media (Audio/Video). Several solu-
tions have been proposed to support real-time playout of
continuous media via the Web, e.g. Netscape. Most of these
solutions do not provide means to the user to negotiate the
desired presentation quality (in terms of quality of service
(QoS) parameters settings); even the proposals that pro-
vide QoS negotiation (more generally QoS management)
are used in a rather static manner, that is, the video/audio
servers are a priori known. In this paper we propose to
integrate in the WWW a dynamic QoS management
approach that allows (1) the user to negotiate the desired
Q0S; and (2) and to select the “best” video/audio server
which might support the user requirements. This activity is
based on the general structure of multimedia documents
and associated QoS parameters, we call meta-data, which
we developed under an ongoing CITR project. The main
objective of the paper is to integrate meta-data associated
with MM document in WWW, e.g. Netscape; this will allow
us to use our dynamic QoS management protocols.

1. Introduction

In the context of a CITR (Canadian Institute for Tele-
communications Research) project, a prototype system for
remote access to News-on-Demand [4, 17] has been devel-
oped. The prototype provides facilities to store, retrieve
and present multimedia (MM) news information. The pro-
totype is an integration of software components developed

by the various teams working on the different sub-projects
components of the major project. The prototype consists of
the distributed multimedia database (DBMS) from Univer-
sity of Alberta [15], the distributed continuous media file
(CMFS) server from University of British Columbia
(UBC) [11], the synchronization component from Univer-
sity of Ottawa [9], a scalable video decoder from INRS [2],
and the QoS management component from University of
Montreal [5].

With the current prototype, the user retrieves through a
database query interface one or more news documents. For
example, the user could ask for the most recent news on
Stanley Cup. Then, he/she selects one document (article) to
be played and sets the desired QoS, which includes the
desired video resolution, video color, etc. The QoS negoti-
ation features of the prototype allow to find an optimal con-
figuration of system components which might support the
delivery of the document while satisfying the user require-
ments. This activity supports database distribution, and
uses a MM document model where the monomedia compo-
nents of the document may exist in several variants. The
variants may support different QoS and may be stored at
different servers [1]; for example, the same video sequence
may exist as a MPEG? file and also as MJPEG file which
are located at different servers. The negotiation operation
(performed by an entity, we call QoS manager) requires
interactions with the different system components: with the
DBMS to get meta-information on the document; with the
CMFS to evaluate its capacity to deliver MM data; and
with the synchronization component to evaluate the syn-
chronization quality to present the document. If the QoS
negotiation is successful, then the document may be pre-
sented right away. However, if the negotiation failed then
the best available offer (which does not, however, satisfy
the initial user requirements) is presented to the user who
may accept the offer, initiate a new negotiation, or abandon

the session.

In this paper we aim to integrate the ideas behind the
CITR prototype in terms of QoS management in the
WWW; to show the practicability of this integration, we
produced a version of the CITR prototype compatible with
the Web (specifically Netscape). Basically, the idea is to be
able to choose between different media variants from dif-
ferent sites depending on the user specified preferences and
the system capabilities. The project is motivated by the fact
that the Web and its associated set of protocols do not sup-
port adequately the real-time transfer of the continuous
media (Audio/Video). This inadequacy is due to the fact
that the underlying Internet transport protocol (TCP/IP)
does not perform resource reservation for real-time data
traffic. Sometimes, Audio/Video clips data are completely
downloaded before being played back by an appropriate
application. This scheme becomes easily impractical for
long video clips. Our project foresee access, through the
Web, to multimedia documents that are distributed over
heterogeneous servers like the http servers (for text and
image components) and the Continuous Media file servers
(CMFS) that was used in our initial prototype. Other serv-
ers such as Vosaic and RealAudio/RealVideo will also be
considered for providing components of a multimedia doc-
ument. The Web-compatible prototype provides a user
interface for the QoS negotiation which enables the user to
specify his/her preferred media presentation quality. The
Audio/Video component can be included in the HTML
pages as a Java applet, Helper application, or a plug-in (a
button on which the user clicks to actually access the
audio/video component). When a user clicks on the button,
a graphical user interface appears that lets him/her specify
his/her preferences. These preferences and the accessibility
of the different media variants are analysed first, and then
an appropriate variant is presented to him. To be able to
support the Quality of Service (QoS) function on the Web,
it is necessary to have access to meta-data of the multime-
dia documents to play. Two solutions are identified: (1)
store the meta-data locally (or in a specific meta-data
server) in a database or in simple files, e.g. Unix files; or
(2) define an extension for the HTML language conveying
the media meta-data related to QoS issues.

The rest of the paper is organized as follows. Section 2
describes the meta-data required for our QoS management
approach. Section 3 describes the integration of the meta-
data of MM documents in WWW. Section 4 discusses the
implementation issues of this integration and presents an
implementation in the context of our CITR prototype.
Finally, Section 5 concludes the paper.

2. Multimedia document and meta-data

A MM document could be multimedia or monomedia. A
multimedia document is composed of several monomedia.
Figure 1 shows the structure of a MM document using the

notation of OMT object model [13]. It shows that a docu-
ment is either a monomedia or a multimedia, and that a
multimedia is composed of one or more monomedia
(aggregation links), and has attributes which consists of
spatial and temporal synchronization constraints.

document

description
copyright cos
tC.

A

[]
Monomedia Multimedia
< presentation
scenario
spatial
+1 relationships
Variant
Format
Size = |
Localization,|...

A

[I |

Continuous Medif Text

Text QoS

Parameters
Audio Video

Audio QoS Video QoS
Parameters Parameters

Image

Image QoS
Parameters

Figure 1. MM Document Model

A monomedia is defined in a particular medium: a text,
a still image, an audio sequence, a graphic or a video
sequence. Several physical representations, called variants,
may exist for a monomedia object which correspond to a
format variant. Each variant has different degrees of quali-
ties. More generally, variants of the same monomedia may
differ in terms of some static parameters which concern
mainly the format of the coding, the size of the file, the
QoS parameters associated with the file, e.g. video color
and audio quality, and the localization of the file. For
example, two variants of the same video sequence could
offer different color qualities; Variantl could be a super-
color variant of the video sequence, while Variant 2 could
be the black and white variant of the same video. Copies of
the same file are considered also as variants. More detailed
description of the model of MM document used can be
found in [1, 5].

We define meta-data of a MM document as the data
about the representation, the structure, QoS, the storage
and the variants of the document. Meta-data is used to

locate, access, deliver and present the MM document. The
document model shown in Figure 1 represents the meta-
data associated with a MM document.

The QoS manager needs the meta-data of the MM doc-
ument to play in order to perform QoS negotiation. Indeed,
upon receipt of the user request to play a MM document
with the desired QoS, the QoS manager determines, for
each monomedia of the document, which of the available
variants is the “best”. This means that the machines that
will deliver the variants are determined. Obviously, this
activity requires the knowledge of the meta-data (location,
QoS characteristics...) associated with the document to
play. A detailed description of the negotiation procedure
can be found in [5].

3. Meta-data and WWW

We assume the existence of a QoS manager that is
responsible for QoS management functions. The operation
of the QoS manager can be initiated either by a helper
application, plug-in, or a Java applet.

Helper Applications

Helper Applications or External Viewers are the exter-
nal programs used by the Web browsers to display the dif-
ferent types of media document [6]. These tools interpret
data like audio and video that a normal browser does not
support. Each Helper Application has an associated MIME
type and particular assigned file extension. Each document
containing a media of that MIME type should have the cor-
responding extension. Web browser, like Netscape, pro-
ceed by activating the appropriate Helper depending on the
file extension of the document matched during the brows-

ing.

Plug-ins

A Plug-in is a specific code for a particular platform
that is designed to extend Netscape Navigator to include a
wide range of interactive and multimedia capabilities [12].
Plug-ins are associated with one or more MIME types used
by the browser to activate them. When activated, the
browser enumerates the available plug-ins on the platform,
and registers each plug-in with the corresponding MIME
type. An instance of a Plug-in is activated each time a cor-
responding data MIME type is encountered. This instance
is killed when the user quits the corresponding page or
when he/she closes the holding window. Plug-ins commu-
nicate with Netscape via an API (Application Program-
ming Interface).

Java applet

A Java applet is a specific kind of application in Java
bytecode which can be transmitted over the network and
executed within WWW Browser. This means that applets
are applications down-loadable on demand. An applet can

use only its own Java code and the Java API the applet
viewer provides. More restrictive, an applet can’t read or
write files on the host that’s executing it.

The main constraint associated with Plug-ins and
Helper Applications is that they should reside on the client
machine. Furthermore, they are (generally) hardware plat-
form/operating system/window system dependent which is
not the case for Java applets. However, Plug-ins and helper
applications do not have the security restrictions of applets.

Upon the receipt of a user request (e.g., clicking on a
button that represents a video/audio document), the QoS
manager operation is initiated by one the technologies
described above. The main issue we deal with is how the
QoS manager gets the meta-data associated with the MM
document (essentially video/audio) in order to perform the
management operations, particularly QoS negotiation [5].
We identify two solutions: (1) Store meta-data in a data-
base (or system files, e.g. Unix files), we call meta-data
server; or (2) define some extensions of HTML to integrate
meta-data directly in HTML documents.

3.1. Meta-data in a database or a file

To get meta-data, the QoS manager should communi-
cate (e.g. via RPC) with the meta-data server (Figure 2).
The meta-data server may consists of as much as complex
as an object-oriented database or as simple as Unix files.
The meta-data server can be located anywhere in the sys-
tem, particularly on the Web server or on the host machine;
it can be centralized or distributed. To support this architec-
ture, the meta-data server should provide a standard inter-
face to the QoS manager; this means that the nature of the
meta-data server should be transparent to the QoS manager.
Then, if we change the implementation of the meta-data
server, we do not have to modify the code of the QoS man-
ager.

continuou
meta-data media

server server

‘Web browser

elper Applicatio
plug-in/
Java applet

QoS]
charactdr.| audio/
variants| | video

QoS manager
(QoS negotiation|
QoS adaptation/
QoS mapping/
ees)

[MM transport system |

Figure 2. Meta-data in a meta-data server

In [4], we defined a set of primitives that should be sup-
ported by a meta-data server; we did implement these

primitives in the context of our CITR project [17, 4], where
the meta-data server was realized using Objectstore.

(1) GetAllMonomedia (Document, List of Monomedia):
Status

This primitive returns List of monomedia components of
Document. It returns Status to indicate the success or the
failure of the operation.

(2) GetQoSMonomedia (Monomedia, QoS parameters):
Status

This primitive returns the QoS parameters of Monomedia.
Examples of these parameters are the type of monomedia,
e.g., video or audio, and the price associated, e.g., copy-
right.

(3) GetAllVariants (Monomedia, List of variants): Status
This primitive returns List of variants associated with Mon-
omedia. It returns Status to indicate the success or the fail-
ure of the operation.

(4) GetQoSVariant (Variant, QoS parameters): Status
This primitive returns the QoS parameters associated with
Variant. It returns Status to indicate the success or the fail-
ure of the operation.

(5) GetSize (Variant, Size): Status

This primitive returns Size of Variant. It returns Status to
indicate the success or the failure of the operation.

(6) GetFormat (Variant, Format): Status

This primitive returns Format of Variant. It returns Status
to indicate the success or the failure of the operation.

(7) GetSite (Variant, Location): Status

This primitive returns Location (the address of the file
server which stores Variant) of Variant. It returns Status to
indicate the success or the failure of the operation.

(8) GetPresentationScenario (Document, Presentation
scenario): Status

This primitive returns Presentation scenario associated
with Document. It returns Status to indicate the success or
the failure of the operation.

3.2. Extension of HTML to integrate meta-data

As stated above, meta-data are necessary for the QoS
management activity. As we are in the Web environment
and the text and image parts of the multimedia documents
are already coded in HTML, we propose to directly include
the meta-data in the HTML documents (Figure 3). For the
needs of multimedia and QoS meta-data we have investi-
gated various proposed HTML extensions. We have
retained two newly defined tags (<KRESOURCE> and
<OBJECT>) that seem suitable for the description of the
meta-data and the definition of multimedia (audio and /or
video) document structures in HTML [10]. The description
of the <RESOURCE> and <OBJECT> elements can be
found in [8] and [7].

Web browser .
= Web continuous
Helper Applicatio server media serve
plug-in/ hd

Java applet 1t . html
QoS manager 3?(?‘;8/
(QoS negotiation/
QoS adaptation/
QoS mapping/
)

[MM transport system |
L =}

Figure 3. Meta-data in (extended) HTML document

The <OBJECT> tag allows the HTML author to spec-
ify the data and /or the properties/parameters for initializ-
ing objects to be inserted into HTML documents as well as
the code that can be used to display/manipulate that
data.This definition is well suitable for our need to include
multimedia object (video and/or audio) with facilities to
specify the parameters (meta-data) and indicate the code
that handles (QoS negotiation and media displaying pro-
gram) the multimedia object. We use the <RESOURCE>
element to deal with the description of resource variants. It
provides information on some resource within another
HTML document. The <LINK> elements, when used with
their REL attribute enable the description of the resource
variants. The resource is then a generic resource while vari-
ants are specific resources. Each <LINK> element
describes a resource variant. The relationships of the
<LINK> element provide a mean to indicate how resource
variants differ from one another i.e the link type provides a
mean to specify what parameter of quality varies.

We have used <RESOURCE> to code the meta-data
[10]. Since the above described meta-data are application
specific, we have used their experimental format, which
means that parameter names are preceded by “x-”. For the
description of the resource variants, none of the existing
relationships seems to fit our needs. In fact, the variants
may differ by a combination of QoS parameters instead of
a single QoS parameter. So, we propose a “QoS-specific”
relationship to simply indicate that variants have several
QoS characteristics. Given these semantics, we can now
describe meta-information on our multimedia objects and
insert them into a HTML document. Suppose the multime-
dia document is composed of a text part coded in HTML,
an video having only one variant and an audio available in
two variants. We propose the following description of the
meta-data for the audio and the video in HTML:
<resource href = Audio_monomedia>

<link rel = QoS-specific href = audiol>
<link rel = QoS-specific href = audio2>
</resource>
<resource href = audiol>
<meta http-equiv = url value =" pnm://audio.realau-
dio.com/audiofilel.ra”>
<meta http-equiv = x-format value = g728>
<meta http-equiv = x-duration value = 16>
<meta http-equiv = x-quality value = phone>
</resource>
<resource href = audio2>
<meta http-equiv = url value = ” pnm://audio.realau-
dio.com/audiofile2.ra”>
<meta http-equiv = x-format value = g728>
<meta http-equiv = x- duration value = 20>
<meta http-equiv = x-quality value =cd>
</resource>
<resource href = video>
<meta http-equiv = url value = “cmfs://sitename/UIO-
texte-file”>
<meta http-equiv = x-format value = h261>
<meta http-equiv = x-duration value = 10>
<meta http-equiv = x-framerate value =30 >
</resource>
To insert the multimedia object in HTML,
<OBJECT id = “multimedia-object” classid = "negotia-
tion-prg">
<PARAM name = audioComponent value = "Audio-mon-
omedia">
<PARAM name = videoComponent value = "video">
</OBIJECT>.
A more detailed description of these extensions can be
found in [10].

4. Implementation

The Web browser we used for the implementation is
Netscape.

4.1. Using helper application technique

The technique of the Helper Application was used as a
first solution to produce a Web-compatible version of our
News-on-Demand prototype [17, 4]; It consists of simply
using the initial CITR prototype as a Helper Application.
We coded text and image components of the multimedia
documents in HTML and stored meta-data as a simple
ASCII file; let us note that in the original prototype, the
QoS module gets the meta-data from the distributed multi-
media database (DBMS) which is based on Objectstore.
Video and audio are included in HTML as hypertext links
which point to the related meta-data (Figure 4). An experi-
mental MIME type with the corresponding “meta” exten-
sion is associated to the meta-data. The user, when clicking
on such a link, activates the QoS negotiation module of the

CITR prototype. The program gets the meta-data file name
as argument instead of getting them from the multimedia
database. From this moment, the web version of the News-
on-Demand system behaves like the original version.

Netscape hypertext links

HTML document

'
7 Netscape

QoS negotiation
interface

video display

ypertext link
 on-line video

Figure 4. An implementation of the extended
version of HTML
The client software is globally composed of a Web
browser (Netscape), the QoS module, a synchronization
module which accesses the CMFS server; the server part is
made of the HTTP server and the CMFS server (Figure 5).

CMFS
— Web browser server
Helper Application)

b e continuous

S media

QoS negotiatio 9 (video/

= audio)

Synchronisation

Decoder]

| Transport system |

Figure 5. Architecture of the news-on-demand
system implemented as helper application

4.2. Using Java applets

Based on our experience with the CITR prototype, we
implemented a user agent which understands the HTML-
encoded meta-data described in Section 3; we decided to
go for a Java solution. Before the access, transfer and dis-
play of the video, some initialization activities must take
place:

1- To get the meta-data

2- To get the user QoS preferences via an user interface or
the use of an existing user profile.

3- To perform QoS negotiation in order to choose the best
variant for the user that can be supported by the system.

4- If such a variant exists, display it.

As <OBJECT> and <RESOURCE> are not yet sup-
ported, we activate the object via a Java applet that receives
as parameter, the identifier (id) of the multimedia object.
The applet then parses the HTML code in order to find the
object and associated meta-data in the extended HTML
page and performs the necessary processing. The meta-data
must be in the same HTML document with the applet. The
important classes used for this activity are:

- MM_Document, a class that represents a structured multi-
media document as shown in Figure 1;
- PageParser, a Java-based HTML parser.

The applet’s parameters are as follows:

- <APPLET CODE="ExtendApplet.class" CODEBASE
= "http://www.iro.umontreal.ca/~madja/sometest"
WIDTH= 1000 HEIGHT= 600>
<PARAM name = "METADATA_ID" value = "multime-
dia-id">
</APPLET>

The applet then creates an instance of the class
MM_Document with the object Id and the URL of the
HTML document (containing the meta-data) as parameters.
MM_Document class makes use of PageParser class to
build the multimedia document structure.

The user may specify his/her desired values for the QoS
parameters via a graphical user interface. This graphical
interface is the visible part of the applet. For video, we
have retained three QoS parameters at the user level. They
are: frame rate, resolution and color. For audio, we have
audio quality (Phone or CD) and language. The cost is also
provided as a choice criteria. The user may also define his/
her priority among the QoS parameters, on one hand, and
on the two monomedia, on the other hand. As an example
of QoS specification by the user, we consider the follow-
ing:

FrameRate >=10

Resolution >= medium

Cost <= 1$

Priority1 = Cost

Priority2 = FrameRate

Priority3 = Resolution

The priority system enables classification among vari-
ants. Giving a user profile and the available variants, the
QoS negotiation engine chooses the best variant that the
system can support at the given time; in case of a problem,
an adaptation will be made by considering the next best
variant. For more details on these operations see [5]. Figure
6 shows the main user interface; the user’s preferences are
expressed in terms of a profile that models all the informa-
tion we need to make a choice for the user. The user can

use a predefined default profile or set a profile that can be
composed of more than one sub-profiles. Each sub-profile
is a set of user’s QoS parameters values and Cost. Cost is
the cost the user is willing to pay for the QoS level defined
by these values. Precisely, the specification described
above constitutes one sub-profile. For each sub-profile we
create an instance of the class UserProfileClass. The user’s
profile is stored in a file for later use.

The Negotiation activity is handled by the Negotiation
class. The Negotiation class uses the document structure
and the user’s profile as parameters. The negotiation con-
sists of:

1- A static negotiation that makes a comparison of media
variants against the client machine characteristics.
These characteristics are modelled by the class Client-
MachineClass. All media variants that can’t be sup-
ported by the client machine are discarded.

2- A comparison of the remaining variants against user’s
profile.

3- A sorting of the variants according to their suitability to
the user’s profile and his priority among QoS parame-
ters

4- The QoS manager then requests the first element of the
sorted list. If the requested variant cannot be supported
by the server, the following offer is considered and so
on. The URL of the variant indicates the server from

which the variant should be requested.

Figure 6. The main user interface of the
web-compatible news-on-demand prototype

The original version of our the News-on-Demand sys-
tem uses the CMFES server for accessing and retrieving
continuous media. Our Web version provides this facility.
However, we also intend to include other continuous media
servers existing in the Web environment: The Vosaic server
[16], the RealAudio/Real Video servers[14]. Vosaic is a cli-

ent-server system developed at the University of Illinois
that provides real-time video on the Web. It uses the VDP
(Video Datagram Protocol) protocol for continuous media
transfer. VDP uses an adaptation algorithm to find the opti-
mal transfer bandwidth. RealAudio developed by Progres-
sive Networks, provides high quality audio over the Web.
Progressive Network announces recently their RealVideo
System.

It would be interesting to integrate these various servers
such that different media variants may use different com-
munication protocols for real-time presentation, corre-
sponding to the available technologies (Figure 7). The non-
continuous parts of the multimedia document could be pro-
vided by the existing HTML servers. The client software
will consequently be an integration of the client software
for each of these different servers.

‘Web browser Web server
VJideo/audIioz text & image
ava applet
(QoS Man%%er) meta-data

other servers

CMES client C
~ Vosaic client Vosaic sever

5$g11€sudi0/ Video RealAudio/vide

(video/audio)

[Transport system |

Figure 7. Architecture of the news-on-demand
system for the Web

5. Conclusion

The aim of our work was to integrate meta-data of mul-
timedia documents in WWW; this was motivated by the
fact that QoS management needs meta-data of the corre-
sponding MM documents. The meta-data we used have
been defined in an ongoing CITR major project “Broad-
band Services” [17]. A first solution (we adopted) was to
store meta-data on a database or file systems; we were not
happy with this solution, since MM documents (HTML
document) were stored and accessed “independently” of
their meta-data. This pushes us to find the HTML extension
conveying the meta-data related to QoS issues. Fortunately,
we didn’t have to define new HTML tags. <KRESOURCE>
and <OBJECT> seem suitable for our need. Before they
can be supported by the popular browsers, we have imple-
mented a Java applet which handles it. There are a number
of other working groups that investigate real-time audio

and video for the Web with QoS management support, such
as the FastWeb project [3]; but a QoS negotiation that
involves the user was not addressed apart from the Fast-
Web project.

References

[1] G.v.Bochmann, B.Kerherve, A.Hafid, P.Dini and A.Pons,
Functional Design of Adaptive Systems, In Proceedings of the
IEEE Workshop on Multimedia Software Development, Berlin,
Germany 1996

[2] E.Dubois, N.Baaziz and M.Matta, Impact of scan conversion
methods on the performance of scalable video coding, In Pro-
ceedings of IS&T/SPIE, San Jose, February, 95

[3]1 M.Fry, A.Seneviratne, A.Vogel and V.Witana “Delivering
QoS Controlled Continuous Media on the World Wide Web”, In
Proc of IWQ0S96, Paris, March 1996

[4] A.Hafid and G.v.Bochmann, QoS Management in News-on-
Demand Systems: Implementation, In the Proceedings of the
Third International Workshop on Protocols for Multimedia Sys-
tems, Madrid, Spain, 1996

[5]A.Hafid and G.v.Bochmann, A Quality of Service Manage-
ment Approach: Design and an Implementation, Multimedia
Tools and Applications Journal, 1998 (to appear) (http:/
www.csd.uwo.ca/faculty/hakim/Publications.html)

[6] Helper
helper_apps/

Applications, http://www.netscape.com/assist/

[7] Giving Information About Other Resources in HTML, http://
www.w3.org/pub/WWW/Mark-up/Resource/Specification

[8] Inserting objects into HTML, http://www.w3.org/pub/WWW/
TR/WD-object.html

[9] L.Lamont and N.D.Georganas, Synchronization Architecture
and Protocols for a Multimedia News Service Application, In
Proceedings of the IEEE International Conference on Multimedia
Computing and Systems, Boston, May 1994

[10] E.Madja, G.v.Bochmann, R.Dssouli and J.Gecsei, HTML
extensions for Multimedia Documents and Quality of Service
management on the Web, Submitted for Standardization

[11] G.Neufeld, D.Makaroff and N.Hutchison, Design of a Varia-
ble Bit Rate Continuous Media File Server for an ATM Network,
In Proceedings of IS&T/SPIE’96, San Jose, California,1996

[12] Plug-in guide, http://home.netscape.com/eng/mozilla/3.0/
handbook/plugins/pguide.htm

[13] J. Rambaugh & al. Object Oriented modelling and Design,
Prentice Hall, 1991

[14] RealAudio, http://www.realaudio.com/

[15] C.Vittal, M.Ozsu, D.Szafron, G.Medani, The Logical Design
of a Multimedia Database for a News-On-Demand Application,
Technical Report #94-16, University of Alberta, Canada, 1994

[16] Vosaic, Continuous Media
choices.cs.uiuc.edu/Vosaic/Vosaic.html

on

the

Web,

http://

[17] J.Wong, K.Lyons, R.Velthuys, G.Bochmann, E.Dubois,
N.Georganas, G.Neufeld, T.Ozsu, J.Brinskelle, D.Evans, A.Hafid,
N.Hutchinson, PInglinski, B.Kerherve, L.Lamont, D.Makaroff,
and D.Szafron, Enabling Technology for Distributed Multimedia
Applications, IBM Systems Journal, Volume 36, No 4, 489-507,
1997

